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Outline
• A Quick Tour of Interpretability 

• Model Transparency 

• Post-hoc Interpretations 

• Moving Visual Interpretability to Language: 

• Word Alignment for NMT Via Model Interpretation 

• Benchmarking Interpretations Via Lexical Agreement 

• Conclusion and Future Work  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What is Interpretability?

• No consensus! 

• Categorization proposed in [Lipton 2018] 

• Mode Transparency 

• Post-hoc Interpretation
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Toy Example
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A Transparent Model
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Transparent Models
• Build another model that accomplishes the same 

task, but with easily explainable behaviors 

• Deep neural networks are not interpretable…  

• So what models are? (Open question) 

• log-linear model? 

• attention model?  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Post-hoc Interpretation

• Human judgments / Standalone models 

• Building a separate model for interpretation 
(different task!) 

• Jiggle the cable! 

• Perturb the input feature and measure sensitivity
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A Little Abstraction… 
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Saliency
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Saliency
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when                    :                     
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Saliency
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What’s good about this?

1. Model-agnostic, and yet with some exposure to 
the interpreted model 

2. Derivatives are easy to obtain for any DL toolkit
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Saliency in Computer Vision
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https://pair-code.github.io/saliency/

Image Saliency
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SmoothGrad

• Gradients are very local measure of sensitivity. 

• Highly non-linear models may have pathological 
points where the gradients are noisy. 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[Smilkov et al. 2017]
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SmoothGrad
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SmoothGrad
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SmoothGrad

• Solution: calculate saliency for multiple copies of 
the same input corrupted with gaussian noise, 
and average the saliency of copies.

 24



Shuoyang Ding — Interpretability in NLP: Moving Beyond Vision

SmoothGrad
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SmoothGrad in Computer Vision
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Original Image Vanilla

SmoothGrad Integrated Gradients

https://pair-code.github.io/saliency/
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Integrated Gradients (IG)
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[Sundararajan et al. 2017]

• Proposed to solve  
feature saturation 

• Baseline: an input that 
carries no information 

• Compute gradients on 
interpolated baseline & 
input and average by 
integration
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IG in Computer Vision
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Original Image Vanilla

SmoothGrad Integrated Gradients

https://pair-code.github.io/saliency/
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Summary
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Speaker

TV Box CD Computer Game 
Console

Speaker

TV Box CD Computer Game 
Console

Model Transparency: 
• Build model that operates in 

an explainable way 
• Interpretation does not 

depend on output

Post-hoc interpretation: 
• Keep the original model intact 
• Interpretation depends on 

specific output
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Summary
• How is this related to what I’m talking about next? 

• Word Alignment for NMT Via Model Interpretation 

• transparent models vs. post-hoc interpretations 

• Benchmarking Interpretations Via Lexical Agreement 

• different post-hoc interpretation methods 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Word Alignment
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Word Alignment
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Model Transparency?
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Model Transparency?
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Wait… word alignments should be aware of the output!
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Post-hoc Interpretations with 
Stand-alone Models?

 36

p(aij | e, f)
Hint: GIZA++, fast-align, etc.
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Post-hoc Interpretations with 
Perturbation/Sensitivity?
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Post-hoc Interpretations with 
Perturbation/Sensitivity?
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“Feature” in Computer Vision
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Photo Credit: Hainan Xu
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“Feature” in NLP
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It’s straight-forward to compute saliency for  
a single dimension of the word embedding.
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“Feature” in NLP
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But how to compose the saliency of each dimension  
into the saliency of a word?
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Li et al. 2016
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Visualizing and Understanding Neural Models in NLP

1
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Our Proposal
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Consider word embedding look-up as a dot product 
between the embedding matrix and an one-hot vector.
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Our Proposal
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The 1 in the one-hot vector denotes the 
identity of the input word.
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Our Proposal
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Let’s perturb that 1 like a real value! 
i.e. take gradients with regard to the 1.
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Our Proposal
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∑
i

ei ⋅
∂y
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(−∞, ∞)range:

Recall this is different from Li’s proposal: 
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Why is this proposal better?

• A input word may strongly discourage certain 
translation and still carry a large (negative) 
gradient. 

• Those are salient words, but shouldn’t be aligned. 

• Absolute value/L2-norm falls into this pit.
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Evaluation

• Evaluation of interpretations is tricky! 

• Fortunately, there’s human judgments to rely on. 

• Need to do force decoding with NMT model.

 48



Shuoyang Ding — Interpretability in NLP: Moving Beyond Vision

Setup

• Architecture: Convolutional S2S, LSTM, 
Transformer (with fairseq default hyper-
parameters) 

• Dataset: Following Zenkel et al. [2019], which 
covers de-en, fr-en and ro-en. 

• SmoothGrad hyper-parameters: N=30 and σ=0.15
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Baselines
• Attention weights 

• Smoothed Attention: forward pass on multiple corrupted 
input samples, then average the attention weights over 
samples 

• [Li et al. 2016]: compute element-wise absolute value of 
embedding gradients, then average over embedding 
dimensions 

• [Li et al. 2016] + SmoothGrad  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Convolutional S2S on de-en
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Attention on de-en
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Ours+SmoothGrad on de-en
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Li vs. Ours
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Li vs. Ours

 55

(English: We do not believe that we should cherry-pick .)
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Summary
• For each of these interpretation methods: 

• Attention: maximum transparency on how the 
model works, but is hard to interpret 

• Stand-alone Alignment Models: gives best word 
alignments, but has nothing to do with the 
translation model 

• Saliency: a good combination of both worlds!  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How about other NLP tasks?

• Text Classification:  
[Aubakirova and Bansal 2016][Arras et al. 2016] 

• Sentiment Analysis:  
[Li et al. 2016][Arras et al. 2017] 

• Question Answering:  
[Mudrakarta et al. 2018]  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Assumption
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Post-hoc Interpretation 
= 

How did the model make decision
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Assumption
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Post-hoc Interpretation 
= 

How did the model make decision?
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Quick Flashback
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Quick Flashback
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Attention

Ours+SmoothGrad
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Research Question

• How can we quantitatively test the effectiveness 
of model interpretation methods in the context of 
NLP? 

• What are the said “effectiveness” correlated with? 
model size? architecture? task performance?
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Computer Vision
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Yao et al. 2018 
Weakly Supervised Medical Diagnosis and Localization from Multiple Resolutions
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Main Challenge

No ground-truth 
interpretation
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Lexical Agreements

• Frequently studied for interpretability [Linzen et al. 
2016][Marvin and Linzen 2018][Gulordava et al .
2018][Giulianelli et al. 2018] 

• They concentrate on evaluating probing task 
performance, i.e. whether the model can predict 
the lexical agreements properly
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E.g. Subject-Verb Agreements

However , most people , having been subjected to 
news footage of the devastated South Bronx , … 

A. look    B. looks
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“Probing Task”



Shuoyang Ding — Interpretability in NLP: Moving Beyond Vision

The Test
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However , most people , having been subjected to 
news footage of the devastated South Bronx , look
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However , most people , having been subjected to 
news footage of the devastated South Bronx , looks



Shuoyang Ding — Interpretability in NLP: Moving Beyond Vision

The Test

However , most people , having been subjected to 
news footage of the devastated South Bronx , look 

The interpretation passes the test, if ∀ w ∈ {news, 
footage, Bronx}, s.t. 

ψ(people) > ψ(w)

 73

ψ: feature importance/saliency
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ψ: feature importance/saliency
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The Test
• We constructed test set based on two existing 

human-annotated corpus 

• Penn Treebank: new, multiple attractors 

• syneval: Marvin and Linzen [2018], single attractor 

• We plan to construct another one with CoNLL-2012 
coreference resolution dataset -- stay tuned!  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Interpreted Model

• Language Model! 

• With final linear layer replaced with one that is 
fine-tuned for predicting specific agreement of 
interest 

• Word prediction may introduce out-of-scope 
agreements and interfere with evaluation
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Experiment
• Architectures: 

• LSTM model, trained on WikiText-2 

• QRNN model [Bradbury et al. 2017], trained on WikiText-2 

• Transformer model w/ adaptive input [Baevski and Auli, 2018], 
trained on WikiText-103 

• All the fine-tuning was done on WikiText-2 

• For subject-verb agreement, the verb tagging is done with 
Stanford POS-tagger  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Probing Task Performance
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Interpretation of LSTM
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Interpretation of QRNN
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Interpretation of Transformer
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What's up with Transformer?
• Two hypothesis: 

• Deep model hurts interpretability 

• Too many heads hurts interpretability 

• SOTA model: 16 layers, 8 heads 

• Diagnostic model: 

• 4 layers, 8 heads 

• 4 layers, 1 head  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SOTA Transformer Model
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4 layers, 8 heads

 84

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

penn syneval

random vanilla
li li_smoothed
smoothed integral



Shuoyang Ding — Interpretability in NLP: Moving Beyond Vision

4 layers, 1 head
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Some Qualitative Checks

• Are those interpretations just looking at the 
immediate previous word? 

• No. They seems to get a lot of things right!
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Some Qualitative Checks

• Are they the same with different architectures? 

• No. Different architectures work differently.
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Summary
• Lexical agreements open up possibilities to do 

rigorous quantitative checks for post-hoc 
interpretation methods in the context of NLP 

• Some works, some does not -> choose wisely! 

• Deep NLP models can be out-of-reach for existing 
interpretation methods. 

• Good task performance != Good interpretability
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Conclusion

• Applying post-hoc interpretation methods from 
computer vision to NLP seems feasible in general! 

• Although, using these methods without careful 
validation would easily lead to misleading 
conclusions.
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Future Work

• Better interpretation method that nails the deep 
architectures in NLP. 

• How can we use interpretability in real-world 
applications (QE?), or improve our models? 

• How can we use interpretability to validate whether  
the model learned certain linguistic properties?
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Thanks!
email: dings@jhu.edu 
twitter: @_sding 
github: shuoyangd

mailto:dings@jhu.edu

