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NOT SURE IF | KNOW

~ WHAT'S INTERERETABILITY



What i1s Interpretability?

 No consensus!
- Categorization proposed in [Lipton 2018]
- Mode Transparency

- Post-hoc Interpretation
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Toy Example

Speaker
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Toy Example
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A Transparent Model

Speaker

Amplifier
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Transparent Models

- Build another model that accomplishes the same
task, but with easily explainable behaviors

- Deep neural networks are not interpretable...
- So what models are?
- log-linear model?

- attention model?
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Post-hoc Interpretation

- Human judgments / Standalone models

- Building a separate model for interpretation
(different task!)

- Jiggle the cable!

- Perturb the input feature and measure sensitivity
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Post-hoc Interpretation

- Perturb the input feature and measure sensitivity
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A Little Abstraction...

O

Black Box Model
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A Little Abstraction...

Black Box Model
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What’s good about this?

1. Model-agnostic, and yet with some exposure to
the interpreted model

2. Derivatives are easy to obtain for any DL toolkit
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Saliency in Computer Vision

Image Saliency

https://pair-code.github.io/saliency/
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SmoothGrad

- Gradients are very local measure of sensitivity.

- Highly non-linear models may have pathological
points where the gradients are noisy.

[Smilkov et al. 2017]
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SmoothGrad

- Solution: calculate sa
the same input corru
and average the salie

lency for multiple copies of
nted with gaussian noise,

ncy of coples.
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SmoothGrad in Computer Vision

Original Image Vanilla
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SmoothGrad

https://pair-code.github.io/saliency/
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Integrated Gradients (IG)

» Proposed to solve
feature saturation

from baseline to

Uniformly scale
input image

e Baseline: an input that
carries no information

Baseline
(all zeros)

« Compute gradients on
interpolated baseline &
Input and average by
Integration

[Sundararajan et al. 2017]
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IG in Computer Vision

Original Image Vanilla

SmoothGrad Integrated Gradients

https://pair-code.github.io/saliency/
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Summary

Computer

Model Transparency: Post-hoc interpretation:

- Build model that operates in - Keep the original model intact
an explainable way - Interpretation depends on

- Interpretation does not specific output

depend on output
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Summary

- How is this related to what I'm talking about next?

- Word Alignment for NMT Via Model Interpretation

- transparent models vs. post-hoc interpretations

- Benchmarking Interpretations Via Lexical Agreement

+ different post-hoc interpretation methods
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Outline

- Moving Visual Interpretability to Language:

- Word Alignment for NMT Via Model Interpretation
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Word Alignment

We do not believe that we should cherry-pick

Wir glauben nicht , dafs wir nur rosinen herauspicken sollten .
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Word Alignment

We | do

not

believe

that

we | should

cherry-pick

Wir

glauben

nicht

. |dafs

WIr

nur

rosinen

herauspicken

sollten| .
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Model Transparency?

A Great NMT Model

should

Wir

glauben

nicht

dafs

WIT

nur

rosinen

herauspicken

sollten
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Model Transparency?

should

A Great NMT Model

Wir |glauben ‘nicht , |dafs | wir [nur [rosinen |herauspicken [sollten| .

Wait... word alignments should be aware of the output!
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Post-hoc Interpretations with
Stand-alone Models?

We | do | not |believe | that | we | should | cherry-pick | .

Wir |glauben [nicht |, |dafs| wir | nur | rosinen|herauspicken | solten| .

p(ai/e,f)
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Post-hoc Interpretations with
Perturbation/Sensitivity?

A Great NMT Model

\

\

0000V
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Post-hoc Interpretations with
Perturbation/Sensitivity?

A Great NMT Model

000
0000
Q00O
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Q000
0000
0000
00O
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Q000
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“Feature” in Computer Vision

Photo Credit: Hainan Xu
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“Feature” In NLP

should

A Great NMT Model

\.

Q000

It’s straight-forward to compute saliency for
a single dimension of the word embedding.
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“Feature” In NLP

should

A Great NMT Model

\o

Q000

But how to compose the saliency of each dimension
iInto the saliency of a word?
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Lietal. 2016

Visualizing and Understanding Neural Models in NLP

dy
N 2|5

range: (0, co)
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Our Proposal

Vocabulary

>

z 1 10|0[0|0|0|oo|o|o|o|0 O=0
£ | |OlO|o|o0|o|o[0|o|o|0
Z | |O|ojoo|ojo|o|oo|0|o O-=-1
: | |O0|0j0lo|0|0/00/00

Q0000000000

Consider word embedding look-up as a dot product

between the embedding matrix and an one-hot vector.
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Our Proposal

O
O
Vocabulary O
e - O
2+ [olelojolojelelelolo]o sl 9 o=o0
£ | |Ololo|o|olelololele|o z O
g | |olololeolo|oeloe g O o-1
g | |O]ojojojojojojojooe 8
O
O

The 1 in the one-hot vector denotes the
identity of the input word.
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Our Proposal

O
O
Vocabulary O
c - O
: } ololojojolelele|ololo = 9 o-=o0
£ | |Olojo|olojo|ololo|elo 2 O
2 | |olo|olelolole|olelole 119 -1
i | |Olojojojelojojelooe 8
O
O

Let’s perturb that 1 like a real value!
l.e. take gradients with regard to the 1.
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Our Proposal

0y
e

l

range: (—oo, )

1 N

Recall this is different from Li’s proposal: N ;21

dy
aei
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Why Is this proposal better?

- A input word may strongly discourage certain
translation and still carry a large (negative)
gradient.

- Those are salient words, but shouldn’t be alighed.

- Absolute value/L2-norm falls into this pit.
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Fvaluation

- Evaluation of interpretations is tricky!
- Fortunately, there’s human judgments to rely on.

- Need to do force decoding with NMT model.
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Setup

- Architecture: Convolutional S2S, LSTM,
Transformer (with fairseq default hyper-
parameters)

- Dataset: Following Zenkel et al. [2019], which
covers de-en, fr-en and ro-en.

- SmoothGrad hyper-parameters: N=30 and 6=0.15
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Baselines

« Attention weights

- Smoothed Attention: forward pass on multiple corrupted
Input samples, then average the attention weights over
samples

- [Li et al. 2016]: compute element-wise absolute value of
embedding gradients, then average over embedding
dimensions

« [Liet al. 2016] + SmoothGrad
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Convolutional S2S on de-en

AD
Worse
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B
Attention on de-en
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Ours+SmoothGrad on de-en
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L1 vs. Ours

(English: We do not believe that we should cherry-pick .)

\\\\\

e SIFTEETS s 8. o & e8I TEE S s a8, o & 8 LETESS s o8, o &
wir wir wir
glauben glauben glauben
-nicht -nicht -nicht
-dafi daB dan
_wir _wir _wir
o o r0
s s s
inen inen inen
-her -her -her
au au au
sp sp sp .
ick ick ick
en en en
sollten sollten sollten H

(a) Attention (b) L1 (c) Ours
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Summary

For each of these interpretation methods:

- Attention: maximum transparency on how the
model works, but i1s hard to interpret

- Stand-alone Alignment Models: gives best word
alignments, but has nothing to do with the
translation model

- Saliency: a good combination of both worlds!
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Outline

- Moving Visual Interpretability to Language:

- Benchmarking Interpretations Via Lexical Agreement
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How about other NLP tasks?

- Text Classification:
[Aubakirova and Bansal 201 6][Arras et al. 2016]

- Sentiment Analysis:
[Li et al. 2016][Arras et al. 2017]

- Question Answering:
[Mudrakarta et al. 2018]
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Assumption

Post-hoc Interpretation

How did the model make decision
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Quick Flashback

—

A Great NMT Model

Wir

glauben

nicht

dafs

WIr

nur

rosinen

herauspicken

sollten
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uick Flashback

should

-
-
-

A Great NMT Model

Wir |glauben |nicht |, |dafs |wir [nur |rosinen |herauspicken |sollten| .

Attention

should

-
-
-

&

A Great NMT Model

Wir |glauben |nicht |, |dafs |wir [nur [rosinen |herauspicken [sollten| .

Ours+SmoothGrad
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Research Question

- How can we quantitatively test the effectiveness

of model interpretation methods in the context of
NLP?

- What are the said “effectiveness” correlated with?
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Computer Vision

Cardiomegaly 0.363 0.162 0.062 Effusion 0.562 0.412

ORERFECER

0.502 0.314 0.348 Mass 0.230 0.363 0.379

el " B CEIER

. 0.246 0.418 Pneumonn 0.152 0.087

Yao et al. 2018
Weakly Supervised Medical Diagnosis and Localization from Multiple Resolutions
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.
Main Challenge

No ground-truth
interpretation
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Lexical Agreements

- Frequently studied for interpretability

- They concentrate on evaluating probing task

performance, I.e. whether the model can predict
the lexical agreements properly
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E.g. Subject-Verb Agreements

However, most people , having been subjected to
news footage of the devastated South Bronx, ...

A. look B. looks
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E.g. Subject-Verb Agreements

However, most people , having been subjected to
news footage of the devastated South Bronx, ...

A. look B. looks
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E.g. Subject-Verb Agreements

However, most people , having been subjected to
news footage of the devastated South Bronx, ...

A. look
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o
E.g. Subject-Verb Agreements

However, most people , having been subjected to
news footage of the devastated South Bronx , ...

A. look B. looks

“Probing Task™
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L
The Test

However, most people , having been subjected to
news footage of the devastated South Bronx , look
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L
The Test

However, most people , having been subjected to
news footage of the devastated South Bronx, looks
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L
The Test

However, most people , having been subjected to
news footage of the devastated South Bronx , look

The interpretation passes the test, if v w € {news,
footage, Bronx}, s.t.

Y(people) > Y(w)

J: feature importance/saliency
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L
The Test

However, most people , having been subjected to
news footage of the devastated South Bronx, looks

The interpretation passes the test, if 3 w € {news,
footage, Bronx}, s.t.

Y(people) < Y(w)

J: feature importance/saliency
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The Test

- We constructed test set based on two existing

human-annotated corpus
- Penn Treebank: new, multiple attractors

- syneval: Marvin and Linzen [2018], single attractor

- We plan to construct another one with CoNLL-2012

coreference resolution dataset -- stay tuned!
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Interpreted Model

- Language Model!

- With final linear

fine-tuned for
Interest

ayer replaced with one that is

edicting specific agreement of

- Word prediction may introduce out-of-scope
agreements and interfere with evaluation
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Experiment

- Architectures:
- LSTM model, trained on WikiText-2
- QRNN model [Bradbury et al. 2017], trained on WikiText-2

- Transformer model w/ adaptive input [Baevski and Auli, 2018],
trained on WikiText-103

- All the fine-tuning was done on WikiText-2

- For subject-verb agreement, the verb tagging is done with
Stanford POS-tagger
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Probing Task Performance

B LSTM ORNN
B Transformer

0.75 -
0.5 -

0.25 -

penn syneval

UNIVERSITY
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L
Interpretation of LSTM

~ random 2 vanilla
Ll " li_smoothed
1 . smoothed . M integral ... .

penn syneval
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L
Interpretation ot QRNN

~ random 2 vanilla
Ll " li_smoothed
1 . smoothed . M integral ...

penn syneval
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L
Interpretation of Transtormer

~ random 2 vanilla
Ll " li_smoothed
1 [l smoothed . M integral ... .

penn syneval
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What's up with Transtormer?

- Two hypothesis:

- Deep model hurts interpretability

- Too many heads hurts interpretability
- SOTA model: 16 layers, 8 heads
- Diagnostic model:

- 4 layers, 8 heads

- 4 layers, 1 head
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L
SOTA Transtormer Model

~ random 2 vanilla
Ll " li_smoothed
1 [l smoothed . M integral ... .

penn syneval
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B
4 layers, 8 heads

~ random 2 vanilla
Ll " li_smoothed
1 . smoothed . M integral ...

penn syneval
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B
4 layers, 1 head

~ random 2 vanilla
Ll " li_smoothed
1 [l smoothed . M integral ... .

penn syneval
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Some Qualitative Shecks

N
Q (%)
O 5. (Q
QN -\«% @ SO Qo?b{@g?\\\ SRS © \\\OQ
% . .
K@ 00 P L INETS %8
vanilla
smoothed
integral
li
li_smoothed

- Are those Interpretations just looking at the
Immediate previous word?

- No. They seems to get a lot of things right!

JOHNS HOPKINS
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Some Qualitative Shecks

)
< 0.\@@0
O ©.
N 2203
<2 S PELE /S S
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vanilla
smoothed
integral
li
li_smoothed

- Are they the same with different architectures?

- No. Different architectures work differently.
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Summary

- Lexical agreements open up possibilities to do

rigorous quantitative checks for post-hoc
Interpretation methods in the context of NLP

- Some works, some does not -> choose wisely!

- Deep NLP models can be out-of-reach for existing

Interpretation methods.

- Good task performance != Good interpretability
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e
Outline

- Conclusion and Future Work
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Conclusion

- Applying post-hoc interpretation methods from

computer vision to NLP seems feasible in general!

- Although, using these methods without careful

validation would easily lead to misleading
conclusions.
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Future Work

- Better interpretation method that nails the deep
architectures in NLP.

- How can we use interpretability in real-world
applications (QE?), or improve our models?

- How can we use interpretability to validate whether
the model learned certain linguistic properties?
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Thanks!

email: dings@jhu.edu
twitter: @_sding
github: shuoyangd
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